
Last update: 07 Feb 2011

Grumpy web server's
Manual

Written by Mateusz Viste

http://www.viste-family.net/mateusz/software/grumpy/

Grumpy web server's Manual - Table of Contents

Table of Contents

Introduction... 3
Installation (inetd)...4
Installation (xinetd)...5
Installation (Windows)..6
Configuration file..7
Directory listing..10
HTTP Authentication..13
CGI support... 15
Virtual Hosts configuration...17
Domain redirection...18
Automatic language detection...19
MIME support...20
Bandwidth stealing prevention..23
HTTP headers customization..24
Customizing error pages...25
Banning specific user-agents...26
Turn Grumpy into a HTTPS server...27
Frequently asked questions (FAQ)..31
Legal mumbo-jumbo...32

Page 2 / 32

Grumpy web server's Manual - Introduction

Introduction

Grumpy is a simple, easy to install, open-source web server for Linux and Windows. Grumpy
is not a standalone daemon - it requires an inetd-compatible superserver to work.

Why one would prefer Grumpy over any other Linux web server, like Apache, Lighttp,
Jigsaw...? Well, I wrote Grumpy primarily for fun, but it appears to have become a rather strong
web server with some very good points: easy to install, lightweight, secure (as it doesn't support
any dangerous features)...

The Grumpy web server is meant to be used for small projects, like home servers, some
intranet applications, small-sized companies, etc. All the configuration is done via a single
configuration file, which has very reasonable defaults. That makes Grumpy easily maintainable,
and allows the administrator to have a full knowledge of what features are allowed/enabled on the
server, and what's not. Grumpy supports CGI applications, and is entirely written in FreeBASIC.

Grumpy is a small project, with very few developers (to tell you the truth, I'm the only one).

Page 3 / 32

Grumpy web server's Manual - Installation (inetd)

Installation (inetd)

Installing Grumpy on a Linux host is very easy. On the first place you will have to copy
grumpy to /sbin or /usr/sbin, and grumpy.cfg to /etc. As mentioned previously, Grumpy needs an
inetd-like superserver to work. If using the basic inetd, you will have to add the following line
to /etc/inetd.conf:

www stream tcp nowait www-data /sbin/grumpy grumpy

Important things here are: "www", which is the name of service to bind to. You will have to
check if the www service has its entry in /etc/services. "www-data" is the name of the user which
has to be used to run the grumpy process. Never use root to run grumpy (or any other public
daemon)! Obviously, you will have to check if the www-data user exists in your system (in
Debian it exists by default), and let him write to /var/log/grumpy.log, read from /etc/grumpy.cfg
and execute /sbin/grumpy. The easiest way to do that is simply to run "chown www-data file" on
each file. When the inetd configuration is done, you'll have to restart the superserver (or the
whole machine). In Debian, restarting inetd may be done by typing "kill -HUP `cat
/var/run/inetd.pid`".

Don't forget to put an index.htm (or index.html) file into your RootDir path (by default, the
RootDir is /var/www/). Note, that you don't need to use any index file if you allow to browse
directories (AllowDirListing=1 in /etc/grumpy.cfg).

Page 4 / 32

Grumpy web server's Manual - Installation (xinetd)

Installation (xinetd)

If your system is running xinetd, the first steps will be similar to the inetd case: on the first
place you will have to copy grumpy to /sbin or /usr/sbin, and grumpy.cfg to /etc. The behavior of
xinetd is very similar to inetd. However, the configuration file has a different syntax. Some
distribution has an unique configuration file for xinetd, others uses separate files for each service
(these files are usually in /etc/xinet.d/). In any case, you will need to add the such (or similar)
lines to let xinetd know about Grumpy:

service www
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = wwwrun
 server = /sbin/grumpy
 instances = 100
 per_source = 10
 log_type = FILE /var/log/xinetd-grumpy.log
 log_on_success = HOST PID DURATION
 log_on_failure = HOST
}

Important things here are: "service www", which is the name of service to bind to. You will
have to check if the www service has its entry in /etc/services. "wwwrun" is the name of the user
which has to be used to run the grumpy process. Never use root to run Grumpy (or any other
public daemon)! However, you may want to use it for troubleshooting purpose. Obviously, you
will have to check if the wwwrun user exists in your system, and let him write to
/var/log/grumpy.log, read from /etc/grumpy.cfg and execute /sbin/grumpy. The easiest way to do
that is simply to run "chown wwwrun file" on each file. When the xinetd configuration is done,
you'll have to restart the superserver (or the whole machine). In most distributions, restarting
xinetd may be done by running "/etc/init.d/xinetd restart". For more details on available features,
see the xinetd manual.

Don't forget to put an index.htm (or index.html) file into your RootDir path (by default, the
RootDir is /var/www/). Note, that you don't need to use any index file if you allow to browse
directories (AllowDirListing=1 in /etc/grumpy.cfg).

Page 5 / 32

Grumpy web server's Manual - Installation (Windows)

Installation (Windows)

Although being primarily written for Linux, Grumpy is available for the Windows platform,
too. I wouldn't recommend you to use Grumpy (nor any server application) on the Windows
platform, but it's obviously up to you to make the choice. The Windows package of Grumpy
contains all things which are required to run the http and gopher servers (executable file, an inetd-
like wrapper, etc). All you have to do is launch one of the batch files "start-http.bat", "start-
gopher.bat" (or both). These batch files will execute the inetd wrapper, binding Grumpy to a
network socket.

As explained in the "Authentication" part of this manual, the Grumpy HTTP server requires a
".grumpy.auth" to be created in the directory which has to be password-protected. You will
quickly notice, that Windows Explorer doesn't allow to create files beginning by a dot. That's why
you will have to use any kind of trick to create the file. One way would be to run the "echo. >
.grumpy.auth" command from within the command-line.

After being started, the Grumpy server will listen on the port 80 (http). If you would like to
check whether it's active or not, you can simply type the "http://127.0.0.1/" address in your web
browser.

Keep in mind, that Windows is not case-sensitive when it comes to handling file names.
Therefore, a "http://server.net/file.html" request will return the same ressource than
"http://server.net/FILE.HTML" (there are big chances that you don't mind anyway).

Because Grumpy cannot share the same port with another TCP/IP application, you may need
to stop or uninstall certain services first. These include (but are not limited to) other web servers,
and firewall products such as BlackIce. Also, you should double-check your firewall's
configuration, to avoid any filtering related trouble.

Page 6 / 32

Grumpy web server's Manual - Configuration file

Configuration file

The Grumpy's configuration file should be at /etc/grumpy.cfg (Linux) or in Grumpy's
directory (Windows), and made readable by the user which will run Grumpy. It's a plain-text file,
containing some tokens with values. Any line beginning by the "#" character is ignored. If, for
some reasons, Grumpy would be unable to access/read his configuration file, he will take default
values. Here's an example of a (well-commented) configuration file:

###
CONFIGURATION FILE FOR THE GRUMPY WEB & GOPHER SERVER
#---#
This file has two distinct parts. One for HTTP settings,
and the other for the gopher configuration.
###

#===#
HTTP SERVER CONFIGURATION
#===#

Set the loging verbosity
0 - No loging (not recommended, unless you really don't care about logs)
1 - Log basic informations, like Request code/answer code. (Default)
2 - Maximum verbose (log full requests + a summary of the answer)
Verbose=1

Specify custom log files
By default, Grumpy logs any events to /var/log/grumpy.log on Linux,
and .\grumpy.log on Windows. Below, you can specify different log
files to write to (you can use different files for HTTP events and
Gopher requests).
HttpLogFile=
GopherLogFile=

Allow/Disallow listing of directories
If you allow directory listing, then Grumpy will list the content of
directories which doesn't have any index.htm or index.html file. You will
probably want to enable it, unless you are paranoid.
0 - Disabled
1 - Enabled (default)
AllowDirListing=1

Directory listing custom CSS style
All generated HTML directory listings are using CSS styles. To customize a
bit the look of these listings, you can specify here a URL to your own CSS
file (obviously, you will have to build it basing on the default style).
Some examples:
DirListCSS=/mystyle.css
DirListCSS=http://www.myserver.net/style.css
DirListCSS=

Page 7 / 32

Grumpy web server's Manual - Configuration file

The server's root directory path.
Default is /var/www
RootDir=/var/www

QoS bandwith limitation
This setting allows you to limit the transfer rate per file (in KiB/s).
Eg. "QoS=5" means that Grumpy will serve files at a rate of max. 5 KiB/s.
Note, that the QoS setting is set per file (an user could download one file
at 5 KiB/s, two files at 10 KiB/s, etc...).
0 disables the QoS limitation (so Grumpy will serve files as fast as he can).
Default is 0.
QoS=0

Content-MD5 header
The Content-MD5 header is a checksum of the file sent via HTTP. It allows
the client to recompute a MD5 checksum of the received file by itself, and
compare it to the one announced by the server. The use of a Content-MD5
header improves the reliability of HTTP transmissions, however, it is a
very CPU-demanding operation, therefore you should adjust it carefully.
The following parameter sets the maximum size (in bytes) of files for which
a Content-MD5 header will be generated. Setting it to 0 disables it.
ContentMD5MaxFileSize=0

MIME support
Grumpy features MIME support. MIME properties may be handled in two different
ways: either automatically (Grumpy scans each file to find out what
content-type to advertise) or user-defined (the user has to bind specific
MIME types to given file extensions). Note, that if you define a given
filetype, then this filetype won't be processed by AutoMIME anymore.
There you can switch on/off the automatic MIME scanner (enabled by default,
1 = enabled, 0 = disabled):
AutoMIME=1
Below you may add any custom filetype you need (see default settings to get
the idea):
AddMimeExt:css=text/css
AddMimeExt:djvu=image/vnd.djvu
AddMimeExt:dxf=image/vnd.dxf
AddMimeExt:htm=text/html
AddMimeExt:html=text/html

Allow/disallow external referers
If you would like to block some specific file types to be retrieved from
domains different than the host of the request (often called "bandwidth
stealing"), then use the setup below. Also, you can add exceptions for some
chosen domains into a whitelist.
Examples:
BlockedMediaFromOtherReferer=(image/jpeg),(image/pjpeg),(image/png)
RefererWhitelist=(www.domain1.net),(www.domain2.com)
BlockedMediaFromOtherReferer=
RefererWhitelist=

Support for CGI applications.
0 - Disabled (default)
1 - Executes CGI, but only if the script has the *.cgi extension and is in
the /cgi-bin/ subdirectory
2 - Executes any file which have the *.cgi extension

Page 8 / 32

Grumpy web server's Manual - Configuration file

#
The CGI support in Grumpy is not standard. Read the Grumpy manual first.
WARNING: AS ANY OTHER SERVER-SIDE CODE EXECUTION, THE CGI SUPPORT MAY
BE *VERY* DANGEROUS IF USED UNCORRECTLY. ENABLE IT ONLY IF YOU
KNOW EXACTLY WHAT YOU ARE DOING!
CgiSupport=0

Virtual Hosts configuration
Grumpy supports the use of virtual hosts. Any virtual host has to be
declared below. The syntax is the following:
vhost:my_hostname=my_directory
#
Eg. vhost:mywebsite.com=/var/www/website/ would declare a virtual host
called "mywebsite.com", and will redirect any requests to that host
to the directory /var/www/website/.
#vhost:mywebsite.com=/var/www/webiste/

Redirect domains
Here you may declare any redirection for a given domain. It's particularily
useful if you have moved your website to another domain name and wants to
keep the content available for users (note, that crawling robots will follow
such redirects, too). A domain redirect will generate a 301 HTTP response for
any request destinated to the redirected domain.
Syntax: Redirect:OldDomain=NewDomain
Example:
RedirectDomain:MyOldDomainName.net=www.MyNewFlashyDomainName.com

Custom HTTP headers
Below you may define few custom header. If set, these headers will be sent
with any HTTP response to the client. If you leave them empty, they won't
be sent.
Example:
x-powered-by=The Grumpy http & gopher server, (C) Mateusz Viste
x-powered-by=
x-hosted-by=
x-server-admin=
x-disclaimer=

Banned User-Agents
There you can specify some User-Agents you definitely do not want to
accept HTTP requests from. Use that only for banning purpose, as the
Grumpy server will be very impolite to requests comming from an
user-agent specified below: it will make him wait for 2s, and answer
by a 403 (Forbidden) code. All user-agents have to be delimited using
a pipe character (|). Note, that Grumpy will check if the specified
string is contained in the declared user-agent, therefore be careful
when adding anything (for example, adding "net" there would make Grumpy
deny requests from any User-Agent which contains "net" in his name).
BannedUserAgents=Nmap|libwww-perl|Morfeus|Toata dragostea|Brutus|DataCha0s

[End of file here]

Page 9 / 32

Grumpy web server's Manual - Directory listing

Directory listing

Grumpy is able to list directories content on his own. That is, if there's no index.html nor
index.htm file in the given directory, and you
enabled directory listing in the configuration, then
Grumpy will happily display an index, listing all
files and subdirectories. Of course, if the directory
requires authentication, Grumpy will ask for
credentials first. Note, that the listing won't display
any hidden resource (ie file or directory beginning
by a dot). It won't display the "descript.ion" file
either.

Description tags

I guess you are wondering now, what's that
« descript.ion » file for? Well, it's a text file that contains descriptions of the directory content.
Grumpy will use it (if found) to fill the "Description" column of the listing. The structure of this
file is very basic. Each entry has to be stored in one line: element[tab]description. It's very
important to keep in mind that the delimiters are TABs, as it won't work with simple spaces (that's
because you may have filenames containging spaces, so it would be confusing to allow spaces as
delimiters). Here's a short example of a "descript.ion" file:

. This directory contains some pictures of my dog
summer2008 Here are many photos from our summer 2008 holiday
ingrass.jpg Doggy in the grass
beach.jpg Swimming dog
dream.jpg Doggy felt asleep

The entry "." is describing the current directory (this description would appear in the bottom
of the listing page). Of course, you can write characters specific to whatever language you speak,
just make sure to save the descript.ion file as an UTF-8 encoded text file.

An important (well, maybe not THAT important, but rather "good to know") restriction of the
"directory listing" feature is the fact, that Grumpy will display only the first 20'000 entries (not
the first alphabetically, but rather the first in disk entries order). Therefore, if you have more than
20'000 elements (files and/or directories) in a single directory, you will probably prefer to build
an indexing mechanism by yourself (eg. via a custom CGI script). Anyway, Grumpy will then
display a big red warning stating that there are too many files to display, so you will immediately
know what's going on.

Customization

If you feel bored by the look of HTML directories listings generated by the Grumpy server,

Page 10 / 32

Grumpy web server's Manual - Directory listing

then you could considerate customizing these listings. The generated HTML code is heavily using
styles, and the Grumpy configuration file allows to set up a personalized CSS file via the
"DirListCSS" parameter. Here is an example of such custom configuration:

DirListCSS=/mystyle.css

With this setting, Grumpy will redirect client browsers to the "/mystyle.css" CSS file.
Obviously, it's up to you to make sure that this file exists, and contains properly formatted CSS
directives. Note, that the "DirListCSS" parameter is a global setting, common to all declared
virtual hosts – therefore, you would have to make sure to put the "mystyle.css" file into the root
directory of each virtual host (if any). Of course, you could specify a complete URL as well:

DirListCSS=http://www.myserver.net/mycustomstyle.css

This way, you will avoid any path-related troubles (you would just have to make sure that
"www.myserver.net" is resolvable by anyone).

Applying a custom CSS require to know at least the original names of used classes. You can
find them in the default Grumpy style, which is presented below:

body {
 color: #000000;
 background-color: #DADAFF;
 margin: 1em 0.5em 1em 0.5em;
}
a:link {color: #0505FF}
a:visited {color: #0000DF}
a:active {color: #0000FF}
a:hover {color: #4040FF}
table.ContentTable {
 padding: 0;
 border-spacing: 0;
 width: 100%;
 background-color: #EAEAFF;
 border: 1px solid #000000;
 margin: 0 0 0 0;
}
td.CurrentURL {
 padding: 0.1em 0.5em 0 0.5em;
 font-weight: bold;
 font-size: 1.2em;
}
td.DescriptionURL {
 padding: 0.1em 0.5em 0.1em 0.5em;
 font-style: italic;
}
td.ErrorMsg {
 background-color: #D00000;
 font-weight: bold;

Page 11 / 32

Grumpy web server's Manual - Directory listing

 text-align: center;
 color: #FFFF20;
 padding: 0.1em 0.5em 0.1em 0.5em;
}
td.EmptyDirectoryMsg {
 background-color: #E1E1FA;
 font-weight: bold;
 text-align: center;
 padding: 0.1em 0.5em 0.1em 0.5em;
}
td.ColHeaders {
 background-color: #C2C2EF;
 padding: 0.1em 0.5em 0.1em 0.5em;
 font-weight: bold;
}
td.DarkEntry {
 background-color: #E1E1FA;
 padding: 0.1em 0.5em 0.1em 0.5em;
}
td.LightEntry {
 background-color: #EAEAFF;
 padding: 0.1em 0.5em 0.1em 0.5em;
}
table.FooterTable {
 width: 100%;
 border: 0;
 padding: 0;
 margin: 0 0 0 0;
 border-spacing: 0;
}
td.FooterLeft {
 text-align: left;
 color: #404040;
 font-size: 0.8em;
}
td.FooterRight {
 text-align: right;
 color: #404040;
 font-size: 0.8em;
}
a.HomepageLink {
 color: #404040;
 text-decoration: none;
}

Page 12 / 32

Grumpy web server's Manual - HTTP Authentication

HTTP Authentication

Basically, two authentication methods exist in HTTP/1.1: the "basic" method, where the
username and password are transmitted in plaintext, and the "digest" method, where the username
and password are replaced by their MD5 hash. Grumpy supports only the first one (don't worry,
the digest one isn't much more secure anyway).

How does it work?

When a particular resource has been protected using basic authentication, Grumpy sends a
401 Authentication Required header with the response to the request, in order to notify the client
that user credentials must be supplied in order for the resource to be returned as requested.

Upon receiving a 401 response header, the client's browser, if it supports basic authentication,
will ask the user to supply a username and password to be sent to the server. If you are using a
graphical browser, such as Netscape or Internet Explorer, what you will see is a box which pops
up and gives you a place to type in your username and password, to be sent back to the server. If
the username is in the approved list, and if the password supplied is correct, the resource will be
returned to the client.

Because the HTTP protocol is stateless, each request will be treated in the same way, even
though they are from the same client. That is, every resource which is requested from the server
will have to supply authentication credentials over again in order to receive the resource.
Fortunately, the browser takes care of the details here, so that you only have to type in your
username and password one time per browser session - that is, you might have to type it in again
the next time you open up your browser and visit the same web site.

Along with the 401 response, certain other information will be passed back to the client. In
particular, it sends a name which is associated with the protected area of the web site. This is
called the realm, or just the authentication name. The client browser caches the username and
password that you supplied, and stores it along with the authentication realm, so that if other
resources are requested from the same realm, the same username and password can be returned to
authenticate that request without requiring the user to type them in again. This caching is usually
just for the current browser session, but some browsers allow you to store them permanently, so
that you never have to type in your password again.

How to set up authentication?

All you have to do is put a ".grumpy.auth" file in the directory which access to has to be
restricted (that file will contain any authorized credentials). Note, that Windows Explorer won't
let you create a file beginning with a dot – if you run Grumpy on Windows, you will have to use
some tricks to do it, like creating the file from the command-line, with the command "echo. >
.grumpy.auth".

Such .grumpy.auth file would have the following structure (any line beginning by a "#"
character is ignored):

Page 13 / 32

Grumpy web server's Manual - HTTP Authentication

Authentication file for Grumpy
realm=Password, please!
John:blahblah
Kim:white kitty

The realm token defines the realm (surprising, isn't it?). Usually the user's browser will
display the realm in the popup window asking for credentials. Then, we have the list of users
(with their passwords) which are allowed to access the given location. The syntax is very simple:
"user:password". From the example above, we see that the users allowed to access the location
are "John" and "Kim". John's password is "blahblah", while Kim's is "white kitty". Note, that the
system is case-sensitive! A single ".grumpy.auth" file restricts the access to its own directory, as
well as any subdirectories (unless these subdirectories have their own ".grumpy.auth" files). Of
course, the ".grumpy.auth" file is not retrievable via HTTP nor gopher. If someone request it,
Grumpy will output a 404 error. Take care to not leave any (renamed) copy of the file
".grumpy.auth", as it would be readable by anyone!

Brute-force protection

The HTTP authentication scheme is by nature vulnerable to brute-force attacks. The attacker
would just have to try various combinations of logins and passwords the fastest he is able to.
Grumpy is aware of such nasty behavior, and apply a simple (but efficient) protection against that
issue: any request asking for a protected content and coming with false credentials will be
responded with a delay of 2 seconds. Note, that 2 seconds is a very long time to wait for a brute-
force attacker.

Attention:

The password is passed from the client to the server in plain text across the network. Anyone
listening somewhere in the packet's way with any variety of packet sniffer will be able to read the
username and password in the clear as it goes across.

Not only that, but remember that the username and password are passed with every request,
not just when the user first types them in. So the packet sniffer need not to be listening at a
particularly strategic time, but just for long enough to see any single request come across the
wire.

And, in addition to that, the content itself is also going across the network in the clear, and so
if the web site contains sensitive information, the same packet sniffer would have access to that
information as it went past, even if the username and password were not used to gain direct
access to the web site.

Is there any solution to these security risks? Of course! The big trouble here is the possibility
to capture clear traffic directly from the wire. The ultimate solution is simply to encipher your
http traffic into SSL packets. That's what we commonly call "HTTPS" (that is, HTTP over SSL).
Read the HTTPS-related chapter of this manual to discover how to turn Grumpy into a secure
HTTPS server.

Page 14 / 32

Grumpy web server's Manual - CGI support

CGI support

Grumpy supports CGI application, although it covers only a limited amount of
functionalities. The only supported CGI programs are applications which output text data (binary
data won't be interpreted properly by the Grumpy's CGI parser). Fortunately, CGI scripts
outputting binary stuff are rather rare. Note, that CGI support is not available on the Windows
port of Grumpy.

The CGI standard defines few ways of providing input data to the CGI application: the GET
and POST methods. The GET method transfers data via URL parameters, thus the amount of data
is limited (typically no more than 256 bytes). The POST method is more efficient, and transfers
data as a response's payload. Grumpy supports only the GET method (on the other hand, it makes
him more secure).

Let's see how does CGI work.

Each time a client requests the URL corresponding to your CGI program, the server will
execute it in real-time. The output of your program will go more or less directly to the client.

The web server (in our case Grumpy), may provide some informations to the CGI application
- either by launching it with some command-line parameters, or setting some environment
variables. Basically, if the client's request doesn't contain any (non-encoded) "=" character in the
URL, then all URL parameters will be used as command-line parameters of the CGI script. For
example, a "GET /cgi-bin/myscript.cgi?param1&param2" request will let Grumpy execute
"myscript param1 param2". If any "=" character is found in the request, then no command-line
parameters are provided. Grumpy will set several environment variables, which can be reused by
the called CGI script:

QUERY_STRING The URL parameters, as provided by the client
SERVER_SOFTWARE The name and version of the server software
SERVER_NAME The server's hostname, DNS alias, or IP address, used

for self-referencing links
GATEWAY_INTERFACE The revision of the CGI specification, as supported by

the server
HTTP_USER_AGENT The client's user-agent
SCRIPT_NAME Script name (for self-referencing links)
REQUEST_METHOD The request method (GET, HEAD, POST...)
SERVER_PROTOCOL The HTTP protocol version of the client's query
HTTP_VERSION Same as SERVER_PROTOCOL
HTTP_COOKIE The client's cookie
HTTP_REFERER The HTTP referer
AUTH_USER The authenticated user (if there was any authentication)
REMOTE_USER Same as AUTH_USER
AUTH_TYPE The authentication type used to authenticate the user

(BASIC, DIGEST...)

Note, that some other environement variables may be set by the superserver (that is,
inetd/xinetd, or any mechanism alike). Here are all variables which may be set:

Page 15 / 32

Grumpy web server's Manual - CGI support

SERVER_PORT The port number to which the request was sent

REMOTE_HOST The hostname making the request.

REMOTE_ADDR The IP address of the remote host making the request

REMOTE_IDENT User name retrieved from the server via the
identification mechanism described by the RFC 931

 When it comes to answer to the client, the CGI application will output a (partial) HTTP
header, which should contain at least the "Content-Type" statement. This header will be followed
by an empty line (which tells to the server that the header is over), and then will come the
document which has to be transmitted to the client. Grumpy will analyze the header transmitted
by the CGI application and will complete it with all lacking informations (the status code, HTTP
version, etc).

As we just said, Grumpy is parsing the HTTP header returned by the CGI applications, and
completes it when necessary. But there are situations where such behavior is unwanted (for
example if the script undertakes to print the entire HTTP response including all necessary header
fields.). That's what we call NPH scripts (NPH stands for "No Parsed Headers"). Grumpy is
supporting such CGI applications - all we have to do, is name these particular programs starting
with "nph-" (like "nph-myscript.cgi"). Grumpy is thereby instructed not to parse the headers (as it
would normally do) nor add any which are missing. If you are going to use NPH, be sure to read
and understand the HTTP spec (http://www.w3.org/Protocols/). Your headers should be complete
and accurate, because you're instructing the Grumpy web server not to correct them or insert
what's missing.

Here are some useful CGI references:

• The Common Gateway Interface <http://hoohoo.ncsa.uiuc.edu/cgi/>

• CGI Made Really Easy <http://www.jmarshall.com/easy/cgi/>

• CGI and Environment Variables <http://www.cs.cf.ac.uk/Dave/PERL/node200.html>

Page 16 / 32

http://www.cs.cf.ac.uk/Dave/PERL/node200.html
http://www.jmarshall.com/easy/cgi/
http://hoohoo.ncsa.uiuc.edu/cgi/
http://www.w3.org/Protocols/

Grumpy web server's Manual - Virtual Hosts configuration

Virtual Hosts configuration

Virtual hosting is a method that servers such as web servers use to host more than one
domain name on the same computer, often on the same IP address. For example, it is often
desirable for companies sharing a web server to have their own domains, with websites accessible
as www.company1.com and www.company2.com, without requiring the user to know any extra
path information. For www.company1.com, the server would send the HTML file from the
directory /var/www/user/Joe/site/, while requests for www.company2.com would make the server
serve pages from /var/www/user/Mary/site/.

With web browsers that support HTTP/1.1 (as nearly all now do), upon connecting to a
webserver, the browsers send the address that the user typed into their browser's address bar (the
URL). The server can use this information to determine which web site, as well as page, show to
the user.

Okay, but how do I configure Grumpy to act in such a smart way? Well, you will be surprised
to see how easy it is! The only thing to do, is to add a vhost entry to your grumpy.cfg
configuration file. There comes an example:

vhost:www.mysite.com=/var/www/mysite/

That short entry is telling Grumpy to look into the /var/www/mysite/ directory for any
request addressed to www.mysite.com. Of course, any other requests will still be answered using
the default RootDir directive. You may add several vhost entries into your configuration file.

Page 17 / 32

Grumpy web server's Manual - Domain redirection

Domain redirection

If one wants to permanently forward an entire web site to a new server (or hostname)
permanently and have the search engines update their database, one should use a 301 redirect.
The 301 redirect code is the most efficient and search engine friendly method for webpage
redirection. The code "301" is interpreted as "moved permanently". So much for the theory.

Let's say, that you are using the domain www.blahblah.org. One day, you want to change
your domain name to www.mumbo-jumbo.net. You will definitely get in troubles, as all people
who bookmarked your site will still come to the first domain, and search engines will do the
same. There Grumpy comes to your help – it allows you to configure a redirection for an entire
domain. It'll be done using a directive of the following form:

RedirectDomain:www.blahblah.org=www.mumbo-jumbo.net

With such directive, any request addressed to www.blahblah.org will be redirected to
www.mumbo-jumbo.net. Note, that the full URL will be preserved during the redirection! For
example, a client requesting http://www.blahblah.org/image/pic.png will be redirected (via a 301
code) to http://www.mumbo-jumbo.net/image/pic.png. The whole process is completely
transparent for the end-user.

Another cool way of using domain redirects is setting a redirect for your domain name to
your www host. That's how I did it for my domain:

RedirectDomain:grumpy-server.net=www.grumpy-server.net

This way any user coming to grumpy-server.net will be automatically switched to
www.grumpy-server.net.

Obviously, you can't redirect a single page with that method, as it's applied to the whole
domain. If you would like use a similar mechanism to redirect clients coming to a specific page
of your web site, I would recommend you to put such code in the <head> section of your html
file:

<meta http-equiv="Refresh" Content="0; URL=http://www.company.com/dir1/">

This tells to the browser to refresh the page immediately with the new specified URL. It
forwards a single page only and not the entire domain. It can be used for example to forward the
default home page of the domain, giving the appearance of forwarding the whole domain.

Page 18 / 32

Grumpy web server's Manual - Automatic language detection

Automatic language detection

Language negotiation is a function of the HTTP protocol which lets a server choose among
several language versions of a page, based on the URL and on preference information sent by the
browser (specifically in the Accept-Language header).

Grumpy is able to detect the preferred language of the user, and redirect the browser to
another resource (using a HTTP 302 redirection), if a translated version of the original file is
available. To make Grumpy look after the user's language, you will have to create a specific file
in the directory that serves multilingual content. This particular file has to be named
"grumpy.lang", and will contain all possible redirections to translated files. Here is an example
for such language configuration file:

This is a comment
index.htm:fr=index_fr.htm
my_dog.html:de=mein_hunde.html
my_dog.html:pl=moj_pies.html
my_dog.html:ru=moj_sobaka.html

In this example, we see that the file index.htm is available in french (under index_fr.htm),
and that the resource called "my_dog.html" is available in few languages as well (german, polish,
russian). Every line beginning by a hash character (#) is ignored, and can be used to write some
comments.

Page 19 / 32

Grumpy web server's Manual - MIME support

MIME support

MIME is used to determine various bits of "meta information" about documents. This
information relates to the content of the document and is returned to the HTTP browser via the
"Content-Type" header (most browsers will use this additional information to process the file in a
specific way).

Grumpy may detect MIME types in two ways. The first is to scan the file against an internal
"signatures" base to determine the file type (if no signature match, then no Content-Type will be
advertised). This behavior is not modifiable, although it may be completely disabled via the
"AutoMIME" configuration token. The second way is to use user-defined extensions to advertise
a particular content-type. A set of user-defined extensions is already pre-configured in the default
configuration file. Below is the configuration section related to MIME configuration:

MIME support
Grumpy features MIME support. MIME properties may be handled in two different
ways: either automatically (Grumpy scans each file to find out what
content-type to advertise) or user-defined (the user has to bind specific
MIME types to given file extensions). Note, that if you define a given
filetype, then this filetype won't be processed by AutoMIME anymore.
There you can switch on/off the automatic MIME scanner (enabled by default,
1 = enabled, 0 = disabled):
AutoMIME=1
Below you may add any custom filetype you need (see default settings to get
the idea):
AddMimeExt:css=text/css
AddMimeExt:djvu=image/vnd.djvu
AddMimeExt:dxf=image/vnd.dxf
AddMimeExt:htm=text/html
AddMimeExt:html=text/html

Note, that if a file match a user-defined pattern (eg. a "txt" file in default server's
configuration), then it won't be processed by the AutoMIME mechanism.

Below you will find the exhaustive list of MIME types detected by the Grumpy's AutoMIME
module. Note, that some of these MIME types will be verified only if the filename has a
particular extension. It is a required restriction, as otherwise general containers would match for
wrong files (eg. the *.zip signature would match OpenOffice documents, MS Office 2007 files,
JAR Java packages, etc).

File format Ext. MIME

7-zip archive *.7z application/x-7z-compressed

Sun Microsystems audio file * audio/basic

Microsoft BMP image *.bmp image/x-ms-bmp

Bzip2 archive * application/x-bzip

Debian package * application/x-deb

Page 20 / 32

Grumpy web server's Manual - MIME support

Adobe Encapsulated PostScript *.eps image/x-eps

Famicom Disk System ROM * application/x-nes-disk

FLAC audio file * audio/x-flac

Macromedia Flash video * video/x-flv

GIF image * image/gif

GZip archive * application/x-gzip

ICO (MS) icon * image/vnd.microsoft.icon

iNES ROM * application/x-nes-rom

IT music module *.it audio/it

JAR Java archive *.jar application/java-archive

Java class * application/x-java-vm

JPEG image * image/jpeg

MIDI music * audio/midi

MS Word document (< 2007) * application/msword

MS Excel document (< 2007) * application/vnd.ms-excel

MS Powerpoint document (< 2007) * application/vnd.ms-powerpoint

MS Word 2007/2008 docx *.docx,
*.docm

application/vnd.openxmlformats-
officedocument.wordprocessingml.document

MS Excel 2007/2008 xlsx *.xlsx application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet

MS Powerpoint 2007/2008 pptx *.pptx application/vnd.openxmlformats-
officedocument.presentationml.presentation

NES sound file * application/x-nes-sound-file

Ogg container * application/ogg

OpenOffice presentation (template) * vnd.oasis.opendocument.presentation-template

OpenOffice spreadsheet (template) * vnd.oasis.opendocument.spreadsheet-template

OpenOffice graphic (template) * vnd.oasis.opendocument.graphics-template

OpenOffice formula (template) * vnd.oasis.opendocument.formula-template

OpenOffice chart (template) * vnd.oasis.opendocument.chart-template

OpenOffice image (template) * vnd.oasis.opendocument.image-template

OpenOffice text (template) * vnd.oasis.opendocument.text-template

OpenOffice presentation * vnd.oasis.opendocument.presentation

OpenOffice text (master file) * vnd.oasis.opendocument.text-master

OpenOffice spreadsheet * vnd.oasis.opendocument.spreadsheet

OpenOffice database * vnd.oasis.opendocument.database

OpenOffice graphic * vnd.oasis.opendocument.graphics

OpenOffice text (web) * vnd.oasis.opendocument.text-web

OpenOffice formula * vnd.oasis.opendocument.formula

OpenOffice chart * vnd.oasis.opendocument.chart

OpenOffice image * vnd.oasis.opendocument.image

OpenOffice text * vnd.oasis.opendocument.text

PCX image * image/x-pcx

PDF document * application/pdf

PNG image * image/png

QuickTime movie * video/quicktime

Page 21 / 32

Grumpy web server's Manual - MIME support

RAR archive *.rar application/x-rar-compressed

RA RealMedia streaming audio file * audio/x-realaudio

RM RealMedia streaming media file * audio/vnd.rn-realmedia

RPM package * application/x-rpm

RTF document * text/rtf

SWF - Shockwave flash * application/x-shockwave-flash

TAR archive *.tar application/x-tar

TIFF image * image/tiff

TXT plain text *.txt text/plain

WAVe audio * audio/x-wav

ZIP archive *.zip application/zip

ZOO archive *.zoo application/x-zoo

This table may seem to be completely unsorted, but that's not the case. In fact, all MIME
types are listed in the order in which they are checked in the source code. ;-)

Page 22 / 32

Grumpy web server's Manual - Bandwidth stealing prevention

Bandwidth stealing prevention

Bandwidth stealing (or "hot linking") is a scenario where some other site uses files hosted on
your site. This results in bandwidth stealing as every time the hot linked page is viewed, images
or files are requested from your server hence your bandwidth is used.

The Grumpy server allows to prevent bandwidth theft in the following way: for each request,
it checks whether the referer of the request points to the same domain name the resource is stored
on. To activate this protection, you will have to use the "BlockedMediaFromOtherReferer" and
(optionally) the "RefererWhitelist" tokens of the Grumpy's configuration file.

Say, that you would like to protect all your JPEG and PNG files from being hot linked by
others, but allowing hotlinking from www.myfavoriteforum.net and www.somedomain.org. Here
is the requiried configuration:

BlockedMediaFromOtherReferer=(image/jpeg),(image/pjpeg),(image/png)
RefererWhitelist=(www.myfavoriteforum.net),(www.somedomain.org)

Note, that file types have to be specified by their MIME types (that's why JPEG type has two
entries, one for regulare JPEG images, and one for progressive JPEGs). This also mean that
Grumpy has to know what the files are, thus you probably will need to make sure that the
AutoMIME feature is activated, or add some MIME types by hand to the configuration file.

As shown in the example, all MIME types and domains have to be written between
parenthesis.

Each time that a bandwidth theft attempt will be detected for specified file types, Grumpy
will answer to the request by a 403 ("Forbidden") HTTP code.

Keep in mind, that the Grumpy's bandwidth stealing prevention system won't react in some
cases: when the request comes without a "Host" header (typically when the client uses the
HTTP/1.0 protocol), or when the request comes without a "Referer" header. However, it does the
job in the great majority of cases.

Page 23 / 32

Grumpy web server's Manual - HTTP headers customization

HTTP headers customization

First of all, what a HTTP header is? HTTP Headers form the core of an HTTP request, and
are very important in an HTTP response. They define various characteristics of the data that is
requested or the data that has been provided (data encoding, caching, authentication...). The
headers are separated from the request or response body by a blank line. HTTP headers are
invisible to the final user, as the user will see the document transfered in the HTTP body, without
caring about the way it came in.

There is a simple example of a HTTP response:

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT
Server: Grumpy/0.17
Connection: close

Then, why one would want to customize anything there? To tell you the truth, there's no
"practical" point in doing that, as the vast majority of users won't ever notice it anyway. However,
it might be a cool information for people looking to the transferred data at the HTTP level (yes, it
happens to me very often).

Grumpy lets you define few custom headers: X-Powered-By, X-Hosted-By, X-Server-
Admin, X-Disclaimer. For example, a customized server response could look like:

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT
Server: Grumpy/0.17
Connection: close
X-Disclaimer: The administrator of this server is not aware of its content!

To make Grumpy answer with such "X-Disclamer" header, you would have to add the
following directive to the configuration file (grumpy.cfg):

x-disclaimer=The administrator of this server is not aware of its content!

Last, but not least, please keep in mind that the RFC 2616 specify that HTTP headers
shouldn't contain characters out of the ISO-8859-1 set, unless specifically encoded.

Page 24 / 32

Grumpy web server's Manual - Customizing error pages

Customizing error pages

Grumpy does support customization of the returned error pages. The following error pages
are customizable: 400, 401, 403, 404. By default, when one of these errors occurs, Grumpy
returns a 4xx code with a html page containing a bare explanation of what happened. You can
replace these defaults page by anything you like, by creating a directory called ".errors" in the
root directory of your web server (or the root of your virtual host server if you are using the
virtual host feature), and place one or several files named "400.htm", "401.htm", "403.htm" and
"404.htm". If you're using virtual hosts, then each virtual host will use a distinct set of custom
error pages.

Note, that if you are going to use any pictures or links on your custom error pages, you will
need to use full (absolute) paths only (relative paths won't work, as the remote browser won't be
aware of the existence of the ".errors" subdirectory).

Example

Say, you would like to change the default 404 error page to something nicer than just "Not
found". We assume that your root path is /var/www/. You will have to make your custom 404
html page first, name it "404.htm" and put it into the directory /var/www/.errors/ (you will
probably have to create the ".errors" directory before). That's all!

Page 25 / 32

Grumpy web server's Manual - Banning specific user-agents

Banning specific user-agents

You have probably already noticed, that when a web server is put online, there are many
suspicious requests coming to it. These requests are often generated by some web spiders, spam
email-collectors, etc. These requests often contains a specific HTTP header called "User-Agent",
which is meant to declare what software has forget the request.

Grumpy is able to block (ban) any chosen User-Agent. In its default configuration, Grumpy
bans some HTTP security scanners. If you would like to modify the list of banned User-Agents,
you will have to edit the "BannedUserAgents" parameter of the configuration file. That option
takes as a value a list of User-Agents to ban, separated by pipe characters ("|"). Say, you would
like to ban any User-Agent containing words "Microsoft" or "IE 6". All you would have to do, is
write the following line in the grumpy.cfg file:

BannedUserAgents=Microsoft|IE 6

Be careful when adding banned user-agents, as Grumpy is checking if the specified string is
contained in the user-agent header declared by the remote machine. It means, that adding "a" as a
banned user-agent would ban all user-agents containing the letter "a" (like "Mozilla", "Opera",
"Arachne", etc...). Banned user-agents are checked in a case-insensitive way.

The Grumpy's banning behavior is quite impolite, therefore you shouldn't use it for any other
purpose than banning a dangerous or ill-intentioned user-agent! Technically speaking, when
Grumpy gets a request coming from a banned user-agent, it makes the remote machine waiting
for 2 seconds, sends a 403 error code (403 means "Forbidden"), and closes the connection.

Attention: Banning user-agents is not a protection of any kind, and shouldn't be used as
such! Banning system will probably discourage most of script kiddies, and save a bit of your
bandwidth, CPU processing power and HDD activity. Don't expect anything more.

Page 26 / 32

Grumpy web server's Manual - Turn Grumpy into a HTTPS server

Turn Grumpy into a HTTPS server

What is it all about?

Reading the title of this chapter, you probably though "Wow, does Grumpy really support
SSL ciphering?". Well... the simple answer is "yes", although it is not technically true.

I won't explain here how does SSL works, nor how certificate are used to encipher and
authenticate hosts, as these subjects are far beyond the scope of this manual. However, we will
see how to create a SSL certificate using OpenSSL, and how to wrap Grumpy into an SSL
communication.

First of all, we need to know (barely) what's the benefit of using SSL. We all know that
HTTP communication is transferred as clear-text over the wires. That means that anybody who
has a physical access to your wire, will be able to see what transit between you and the HTTP
server you are connected to. Obviously, that includes any passwords you could provide to
authenticate yourself. The solution to this problem is quite simple: use an end-to-end encryption
mechanism, which will transport your HTTP traffic (in this case, the encryption mechanism will
be SSL). Of course, if you don't care about that (eg. you host a website with public accesses
only), then you won't have much benefits from SSL (apart authenticating the server to avoid any
possible spoofing, but again – it won't be discussed here). You probably already guessed, that
HTTP encrypted over a SSL tunnel is what we commonly know as "HTTPS".

Here we are again: How do I turn Grumpy into a HTTPS server? As said before, Grumpy
itself doesn't provide any SSL support, as it works on clear-text communication only. However,
we can use any SSL wrapper to tunnel Grumpy through a secure (enciphered) channel. For the
needs of this manual, we will discover how to configure a HTTPS server using Grumpy, the
Stunnel wrapper, and the OpenSSL suite in a Linux environment (really, it is not as hard as it
sounds).

Install the Stunnel wrapper

There's no general guide-line for installing Stunnel on your server system. It will mostly
depends of your operating system. You may install it from sources, or apply the Stunnel package,
or copy the required binaries, etc... If you're using a Debian Linux operating system, you can
easily install the whole Stunnel package using the command below:

apt-get install stunnel

On other systems, you will probably have equivalent commands. Check your system's
handbook for details.

Generate your own SSL certificate

SSL is based on a public key infrastructure, which means that we will need a pair of keys – a
private one, and its public equivalent. Sorry for this techy language... it's not so important anyway

Page 27 / 32

Grumpy web server's Manual - Turn Grumpy into a HTTPS server

– all you have to remember, is that you will need a certificate file, which will contain your keys,
plus some other informations (Diffie-Hellman parameters...). Before starting, you will have to
check whether your system has an OpenSSL installation or not (it's enough to check if you get
something after typing the "openssl" command from within your shell). If not, install it now.

To generate a valid SSL certificate containing both your private and public key, you can use a
command of the following syntax:

openssl req -new -x509 -days 365 -nodes -config stunnel.cnf -out stunnel.pem
-keyout stunnel.pem

This creates a private key, and a self-signed certificate. The arguments mean:

-days 365 make this key valid for 1 year, after which it's not to be used anymore
(you may want to increase this value)

-new Generate a new key

-x509 Generate an X509 certificate (self sign)

-nodes Don't put a password on this key (otherwise you would have to
manually type the certificate's password at each Stunnel call)

-config stunnel.cnf the OpenSSL configuration file to use (you will find it somewhere in
your Stunnel installation)

-out stunnel.pem where to put the SSL certificate

-keyout stunnel.pem put the key in this file (keep the same than above)

The OpenSSL generator will ask you few questions, and one of them will be to give a
"Common Name" (or CN) to your certificate. This is quite important, as this parameter is
carefully checked by all modern web browsers. The "Common Name" has to be exactly the
machine's host name, as used by the final client to access your server (in most cases it will be its
FQDN, like "www.mysecuresite.net", but it could be also its IP, if clients will access the site
typing the site's IP in their URL bar). If the certificate's Common Name would not match the
FQDN used by the remote client to reach your site, the user's browser will display a warning,
telling that the certificate presented by your server is wrong.

Note, that Stunnel will often need some DH parameters, too. DH stands for "Diffie-
Hellman", it is a cryptographic protocol that allows two parties that have no prior knowledge of
each other to jointly establish a shared secret key over an insecure communications channel.
These DH parameters have to be in the same file than the server's certificate. To generate DH
parameters for our freshly created certificate, we will use the following command:

openssl gendh 512 >> stunnel.pem

It may happen that your specific installation of Stunnel doesn't require DH parameters, but it
won't harm to have them in the file anyway.

If you would like to know how to generate a more specific certificate (choose the algorithm,

Page 28 / 32

Grumpy web server's Manual - Turn Grumpy into a HTTPS server

key length, etc..), go read the OpenSSL documentation.

The procedure explained above will provide you with a custom, self-signed certificate.
Anyone can make a self-signed certificate. It is a totally valid SSL certificate. However most SSL
clients (browsers) wish to verify the identity of the organization that signed the certificate. These
SSL clients often have a hard-coded list of organizations (Certificate Authorities) that sign keys
after doing background checks, etc.

Since the key and certificate you just generated are not in the hard-coded list that your SSL
client uses, you will get either an error or warning message when attempting to connect to your
HTTPS website. If you wish to interact with third-party clients that have hard coded lists of
acceptable Certificate Authorities, and you do not want annoying dialog boxes popping up for the
user on the first (or all) connections, then yes, you will have to have your key signed by a valid
Certificate Authority. Unfortunately, it won't be free. It won't be cheap either.

Configure the HTTPS access

Once you installed Stunnel, and generated an appropriate certificate for your server, you have
to configure your system to listen on a specific port and forward any incoming connections to
Grumpy, passing first through the Stunnel wrapper. There are several ways to achieve that, I will
present one of them, which is using the xinetd super-server.

In fact, configuring xinetd to use Stunnel is not harder than configuring a bare (HTTP)
Grumpy server. The whole point is to tell xinetd to pass any streams coming to a specific port
(usually, you will want to use the standard TCP/443 port) to STUNNEL, which will have to be
instructed to forward the stream to Grumpy, assuring the encryption/decryption on the fly.

Here is a simple example of a xinetd section for a HTTPS service using Stunnel and Grumpy:

service https
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = www-data
 server = /usr/bin/stunnel
 server_args = -l /sbin/grumpy -p /etc/ssl/certs/stunnel.pem
 instances = 100
 per_source = 20
 log_type = FILE /var/log/xinetd-grumpy-ssl.log 500K 10M
 log_on_success = HOST PID DURATION
 log_on_failure = HOST
}

Of course, you may have to adjust it depending of your system's configuration. Important
things here are "https", "www-data" and (obviously) the paths to the Stunnel and Grumpy
binaries, and your certificate file. "https" is the name of the service on which xinetd has to listen
on (typically, "https" should be binded to the port 443 via your "/etc/services" file). "www-data"

Page 29 / 32

Grumpy web server's Manual - Turn Grumpy into a HTTPS server

is the user which has to be used to run the Stunnel instance. For testing purpose, you could use
the root user, although it is not recommended to run any public service with root rights!

If you would like to have more details, go read the documentation of xinetd and/or Stunnel.

Why can't I use SSL with virtual hosts?

The reason is very technical, and a somewhat "chicken and egg" problem. The SSL protocol
layer stays below the HTTP protocol layer and encapsulates HTTP. The SSL session is a separate
transaction, that takes place before the HTTP session has begun. The server receives an SSL
request on a specific IP. Since the SSL request does not contain any Host: field, the server has no
way to decide which SSL certificate to use, because he would need to know the content of the
"host" HTTP header. Obviously, this "host" header can't be provided until the SSL session is
established... You can, of course, use Virtual Hosting to identify many non-SSL virtual hosts (all
on port 80, for example) and then have a single SSL virtual host (on port 443).

Last thoughts

Keep in mind, that using SSL encryption is a very demanding (cpu-eating) process. Using
SSL on top of Grumpy will slower your server's response times (higher latency), as well as its
overall speed. My final advice would be "do not use SSL if you don't need it".

Besides that, please note, that the Grumpy server does not contain any cryptography itself.
However, remember that import and/or export of cryptographic software, code providing hooks to
cryptographic algorithms, and discussion about cryptography is illegal in some countries. It is
imperative for you to know your local laws governing cryptography. I am not liable for anything
you do that violates your local laws.

Page 30 / 32

Grumpy web server's Manual - Frequently asked questions (FAQ)

Frequently asked questions (FAQ)

Q: Does Grumpy support special (nationalized) character sets in file names?

A: Yes, it does. Grumpy implements support for the UTF-8 encoding, therefore it is able to
handle any existing language. Note, that it requires the local server's filesystem to be using
UTF-8, too, otherwise only the basic ASCII set will be handled properly.

Q: Can I use Grumpy for commercial purpose, or adapt it to my own needs?

A: Yes, you definitely can. Grumpy is released under the GPLv3 license, therefore everyone is
free to use it, modify it, and even sell it. However, you can't claim that you are the author of
this software, and you must provide the source code of any modification you do on it (and
you can't ever drop the GPL licensing). Note, that if you add any feature or fix to Grumpy, I
would be happy to add your code to the “official” release.

Q: How do I run PHP on Grumpy?

A: You can't. Sorry. I wrote Grumpy with simplicity in mind, and adding PHP support would be
a mess. However, you can use CGI scripts instead. CGI will provide you very similar
possibilities to PHP.

Q: What's the maximum file size that Grumpy can serve?

A: Grumpy itself can serve files that are up to 8 exbibytes (EiB) big. However, there are chances
that your filesystem will limit you much sooner (for example EXT3 supports files up to 2 TiB
of size, while EXT4 supports files up to 16 TiB).

Page 31 / 32

Grumpy web server's Manual - Legal mumbo-jumbo

Legal mumbo-jumbo

Copyright © Mateusz Viste 2008, 2009, 2010, 2011

http://www.viste-family.net/mateusz/software/grumpy/

All rights reserved. This product or documentation is protected by copyright and is
distributed under licenses restricting its use, copying, distribution and decompilation. See the
GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version for details.

The copyright owner gives no warranties and makes no representations about the contents of
this manual and specifically disclaims warranties of merchantability or fitness to any purpose.

The copyright owner reserves the right to revise this manual and to make changes from time
to time in its content without notifying any person of such revision or changes.

Trademarks

Unix is a registered trademark of UNIX System Laboratories, Inc. Windows, WindowsNT,
and Win32 are registered trademarks of Microsoft Corp. All other product names mentioned
herein are the trademarks of their respective owners.

Page 32 / 32

http://www.viste-family.net/mateusz/grumpy/
http://www.viste-family.net/mateusz/grumpy/
http://www.viste-family.net/mateusz/grumpy/

	Table of Contents
	Introduction
	Installation (inetd)
	Installation (xinetd)
	Installation (Windows)
	Configuration file
	Directory listing
	HTTP Authentication
	CGI support
	Virtual Hosts configuration
	Domain redirection
	Automatic language detection
	MIME support
	Bandwidth stealing prevention
	HTTP headers customization
	Customizing error pages
	Banning specific user-agents
	Turn Grumpy into a HTTPS server
	Frequently asked questions (FAQ)
	Legal mumbo-jumbo

