
Last update: 25 Feb 2009

Grumpy web & gopher server's
Manual

Written by Mateusz Viste

http://www.viste-family.net/mateusz/grumpy/

Grumpy web & gopher server's Manual - Table of Contents

Table of Contents
Introduction...3
Installation (inetd)...4
Installation (xinetd)...5
Configuration file..6
Directory listing..8
HTTP Authentication..9
CGI support...11
Customizing error pages...13
Gopher server..14
Legal mumbo-jumbo...17

Page 2 / 17

Grumpy web & gopher server's Manual - Introduction

Introduction

Grumpy is a simple, easy to install, open-source web and gopher server for Linux. Grumpy is
not a standalone daemon - it requires an inetd-compatible superserver to work.

Why one would prefer Grumpy over any other Linux web server, like Apache, Lighttp,
Jigsaw...? Well, I wrote Grumpy primarily for fun, but it appears to have become a rather strong
web server with some very good points: easy to install, lightweight, secure (as it doesn't support
any dangerous features)...

The Grumpy web server is meant to be used for small projects, like home servers, some
intranet applications, small-sized companies, etc. All the configuration is done via a single
configuration file, which has very reasonable defaults. That makes Grumpy easily maintainable,
and allows the administrator to have a full knowledge of what features are allowed/enabled on the
server, and what's not. Grumpy supports CGI applications, may act as a gopher server, and is
entirely written in FreeBASIC.

Grumpy is a small project, with very few developers (to tell you the truth, I'm the only one),
but it keeps growing, and gets improved continuously. Below you will see a cool graph which
presents the project's growth over the time.

...Yeah, I haven't anything better to put there. :-)

Page 3 / 17

v0.10 v0.11 v0.12 v0.13 v0.14 v0.15 v0.16

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

Number of lines

Grumpy web & gopher server's Manual - Installation (inetd)

Installation (inetd)

Installing Grumpy on a Linux host is very easy. On the first place you will have to copy
grumpy to /sbin or /usr/sbin, and grumpy.cfg to /etc. As mentioned previously, Grumpy needs an
inetd-like superserver to work. If using the basic inetd, you will have to add the following line to /
etc/inetd.conf:

www stream tcp nowait www-data /sbin/grumpy grumpy

Important things here are: "www", which is the name of service to bind to. You will have to
check if the www service has its entry in /etc/services. "www-data" is the name of the user which
has to be used to run the grumpy process. Never use root to run grumpy (or any other public
daemon)! Obviously, you will have to check if the www-data user exists in your system (in
Debian it exists by default), and let him write to /var/log/grumpy.log, read from /etc/grumpy.cfg
and execute /sbin/grumpy. The easiest way to do that is simply to run "chown www-data file" on
each file. When the inetd configuration is done, you'll have to restart the superserver (or the
whole machine). In Debian, restarting inetd may be done by typing "kill -HUP `cat
/var/run/inetd.pid`".

Don't forget to put an index.htm (or index.html) file into your RootDir path (by default, the
RootDir is /var/www/). Note, that you don't need to use any index file if you allow to browse
directories (AllowDirListing=1 in /etc/grumpy.cfg).

Page 4 / 17

Grumpy web & gopher server's Manual - Installation (xinetd)

Installation (xinetd)

If your system is running xinetd, the first steps will be similar to the inetd case: on the first
place you will have to copy grumpy to /sbin or /usr/sbin, and grumpy.cfg to /etc. The behavior of
xinetd is very similar to inetd. However, the configuration file has a different syntax. Some
distribution has an unique configuration file for xinetd, others uses separate files for each service
(these files are usually in /etc/xinet.d/). In any case, you will need to add the following lines to let
xinetd know about Grumpy:

service www
disable = no
socket_type = stream
protocol = tcp
wait = no
user = wwwrun
server = /sbin/grumpy
instances = 100
per_source = 10
log_type = FILE /var/log/xinetd-grumpy.log
log_on_success = HOST PID DURATION
log_on_failure = HOST

Important things here are: "service www", which is the name of service to bind to. You will
have to check if the www service has its entry in /etc/services. "wwwrun" is the name of the user
which has to be used to run the grumpy process. Never use root to run Grumpy (or any other
public daemon)! However, you may want to use it for troubleshooting purpose. Obviously, you
will have to check if the wwwrun user exists in your system, and let him write to
/var/log/grumpy.log, read from /etc/grumpy.cfg and execute /sbin/grumpy. The easiest way to do
that is simply to run "chown wwwrun file" on each file. When the xinetd configuration is done,
you'll have to restart the superserver (or the whole machine). In most distributions, restarting
xinetd may be done by running "/etc/init.d/xinetd restart". For more details on available features,
see the xinetd manual.

Don't forget to put an index.htm (or index.html) file into your RootDir path (by default, the
RootDir is /var/www/). Note, that you don't need to use any index file if you allow to browse
directories (AllowDirListing=1 in /etc/grumpy.cfg).

Page 5 / 17

Grumpy web & gopher server's Manual - Configuration file

Configuration file

The Grumpy's configuration file should be at /etc/grumpy.cfg, and made readable by the user
which will run Grumpy. It's a plain-text file, containing some tokens with values. Any line
beginning by a "#" character is ignored. If, for some reasons, Grumpy would be unable to
access/read his configuration file, he will take default values. Here's an example configuration
file:

##
Configuration file for the Grumpy web server
##

Set the loging verbosity
0 - No loging (not recommended, unless you really don't care about logs)
1 - Log basic informations, like Request code/answer code. (Default)
2 - Maximum verbose (log full requests + a summary of the answer)
Verbose=1

Allow/Disallow listing of directories
If you allow directory listing, then Grumpy will list the content of
directories which doesn't have any index.htm or index.html file. You will
probably want to enable it, unless you are paranoid.
0 - Disabled (default)
1 - Enabled
AllowDirListing=0

The server's root directory path.
Default is /var/www
RootDir=/var/www

QoS bandwith limitation
This setting allows you to limit the transfer rate per file (in KiB/s).
Eg. "QoS=5" means that Grumpy will serve files at a rate of max. 5 KiB/s.
Note, that the QoS setting is set per file (an user could download one file
at 5 KiB/s, two files at 10 KiB/s, etc...).
0 disables the QoS limitation (so Grumpy will serve files as fast as he can).
Default is 0.
QoS=0

Support for CGI applications.
0 - Disabled (default)
1 - Executes CGI, but only if the script has the *.cgi extension and is in
the /cgi-bin/ subdirectory
2 - Executes any file which have the *.cgi extension
#
The CGI support in Grumpy is not standard. Read the Grumpy manual first.
WARNING: AS ANY OTHER SERVER-SIDE CODE EXECUTION, THE CGI SUPPORT MAY
BE *VERY* DANGEROUS IF USED UNCORRECTLY. ENABLE IT ONLY IF YOU
KNOW EXACTLY WHAT YOU ARE DOING!
CgiSupport=0

Page 6 / 17

Grumpy web & gopher server's Manual - Configuration file

Virtual Hosts configuration
Grumpy supports the use of virtual hosts. Any virtual host has to be
declared below. The syntax is the following:
vhost:my_hostname=my_directory
#
Eg. vhost:mywebsite.com=/var/www/website/ would declare a virtual host
called "mywebsite.com", and will redirect any requests to that host
to the directory /var/www/website/.
#vhost:mywebsite.com=/var/www/webiste/

Redirect domains
Here you may declare any redirection for a given domain. It's particularily
useful if you have moved your website to another domain name and wants to
keep the content available for users (note, that crawling robots will follow
such redirects, too). A domain redirect will generate a 301 HTTP response for
any request destinated to the redirected domain.
Syntax: Redirect:OldDomain=NewDomain
Example:
RedirectDomain:MyOldDomainName.net=www.MyNewFlashyDomainName.com

Custom HTTP headers
Below you may define few custom header. If set, these headers will be sent
with any HTTP response to the client. If you leave them empty, they won't
be sent.
Example:
x-powered-by=The Grumpy http & gopher server, (C) Mateusz Viste
x-powered-by=
x-hosted-by=
x-server-admin=
x-disclaimer=

Gopher configuration
There comes the Gopher configuration. If you don't know what Gopher is,
then don't bother about this section - you don't need it.
The Gopher engine implemented into Grumpy needs to know three things:
GopherRoot - that's the local path to Gopher ressources.
GopherHostname - The public hostname the gopher server is available at.
GopherPort - The port on which the public Gopher server listens on.
GopherRoot=/var/gopher/
GopherHostname=gopher.mydomain.net
GopherPort=70

Page 7 / 17

Grumpy web & gopher server's Manual - Directory listing

Directory listing

Grumpy is able to list directories content on his own. That is, if there's no index.html nor
index.htm file in the given directory, and you enabled directory listing in the configuration, then
Grumpy will happily display an index, listing all files and subdirectories. Of course, if the
directory requires authentication, Grumpy will ask
for credentials first. Note, that the listing won't
display any hidden ressource (ie file or directory
beginning by a dot). It won't display the
"descript.ion" file either.

I guess you are wondering now, what's that
« descript.ion » file for? Well, it's a text file which
contains any descriptions of the directory content.
Grumpy will use it (if found) to fill the
"Description" column of the listing. The structure of
that file is very basic. Each entry has to be stored in
one line: element[tab]description. It's very important
to keep in mind that the delimiters are TABs, as it
won't work with simple spaces (that's because you may have filenames containging spaces, so it
would be confusing to allow spaces as delimiters). Here's a short example of a "descript.ion" file:

. This directory contains some pictures of my dog
summer2008 Here are many photos from our summer 2008 holiday
ingrass.jpg Doggy in the grass
beach.jpg Swimming dog
dream.jpg Doggy felt asleep

The entry "." is describing the current directory (this description would appear in the bottom
of the listing page). An important (well, maybe not THAT important, but rather "good to know")
restriction of the "directory listing" feature is the fact, that Grumpy will display only the first
20'000 entries (not the first alphabetically, but rather the first in disk entries order). Therefore, if
you have more than 20'000 elements (files and/or directories) in a single directory, you will
probably prefer to build an index by yourself. Anyway, Grumpy will then display a big red
warning stating that there are too many files to display.

Page 8 / 17

Grumpy web & gopher server's Manual - HTTP Authentication

HTTP Authentication

Basically, two authentication methods exist in HTTP/1.1: the "basic" method, where the
username and password are transmitted in plaintext, and the "digest" method, where the username
and password are replaced by their MD5 hash. Grumpy supports only the first one.

How does it work?

When a particular resource has been protected using basic authentication, Grumpy sends a
401 Authentication Required header with the response to the request, in order to notify the client
that user credentials must be supplied in order for the resource to be returned as requested.

Upon receiving a 401 response header, the client's browser, if it supports basic authentication,
will ask the user to supply a username and password to be sent to the server. If you are using a
graphical browser, such as Netscape or Internet Explorer, what you will see is a box which pops
up and gives you a place to type in your username and password, to be sent back to the server. If
the username is in the approved list, and if the password supplied is correct, the resource will be
returned to the client.

Because the HTTP protocol is stateless, each request will be treated in the same way, even
though they are from the same client. That is, every resource which is requested from the server
will have to supply authentication credentials over again in order to receive the resource.
Fortunately, the browser takes care of the details here, so that you only have to type in your
username and password one time per browser session - that is, you might have to type it in again
the next time you open up your browser and visit the same web site.

Along with the 401 response, certain other information will be passed back to the client. In
particular, it sends a name which is associated with the protected area of the web site. This is
called the realm, or just the authentication name. The client browser caches the username and
password that you supplied, and stores it along with the authentication realm, so that if other
resources are requested from the same realm, the same username and password can be returned to
authenticate that request without requiring the user to type them in again. This caching is usually
just for the current browser session, but some browsers allow you to store them permanently, so
that you never have to type in your password again.

How to set up authentication?

As mentioned before, all you have to do is put a ".grumpy.auth" file in the directory which
access to has to be restricted. Such .grumpy.auth file would have the following structure (any line
begining by a "#" character is ignored):

Authentication file for Grumpy
realm=Password, please!
John:blahblah
Kim:white kitty

Page 9 / 17

Grumpy web & gopher server's Manual - HTTP Authentication

The realm token defines the realm (surprising, isn't it?). Usually the user's browser will
display the realm in the popup window asking for credentials. Then, we have the list of users
(with their passwords) which are allowed to access the given location. The syntax is very simple:
"user:password". From the example above, we see that the users allowed to access the location
are "John" and "Kim". John's password is "blahblah", while Kim's is "white kitty". Note, that the
system is case-sensitive! A single ".grumpy.auth" file restricts the access to its own directory, as
well as any subdirectories (unless these subdirectories have their own ".grumpy.auth" files). Of
course, the ".grumpy.auth" file is not retrievable via HTTP. If someone request it, Grumpy will
output a 404. Take care to not leave any (renamed) copy of the file ".grumpy.auth", as it would be
readable by anyone!

Attention:

The password is passed from the client to the server in plain text across the network. Anyone
listening somewhere in the packet's way with any variety of packet sniffer will be able to read the
username and password in the clear as it goes across.

Not only that, but remember that the username and password are passed with every request,
not just when the user first types them in. So the packet sniffer need not to be listening at a
particularly strategic time, but just for long enough to see any single request come across the
wire.

And, in addition to that, the content itself is also going across the network in the clear, and so
if the web site contains sensitive information, the same packet sniffer would have access to that
information as it went past, even if the username and password were not used to gain direct
access to the web site.

Page 10 / 17

Grumpy web & gopher server's Manual - CGI support

CGI support

Grumpy supports CGI application, although it covers only a limited amount of
functionalities. The only supported CGI programs are applications which output text data (binary
data won't be interpreted properly by the Grumpy's CGI parser). Fortunately, CGI scripts
outputting binary stuff are rather rare.

The CGI standard defines few ways of providing input data to the CGI application: the GET
and POST methods. The GET method transfers data via URL parameters, thus the amount of data
is limited (typically no more than 256 bytes). The POST method is more efficient, and transfers
data as a response's payload. Grumpy supports only the GET method (on the other hand, it makes
him more secure).

Let's see how does CGI work.

Each time a client requests the URL corresponding to your CGI program, the server will
execute it in real-time. The output of your program will go more or less directly to the client.

The web server (in our case Grumpy), may provide some informations to the CGI application
- either by launching it with some command-line parameters, or setting some environment
variables. Basically, if the client's request doesn't contain any (non-encoded) "=" character in the
URL, then all URL parameters will be used as command-line parameters of the CGI script. For
example, a "GET /cgi-bin/myscript.cgi?param1&param2" request will let Grumpy execute
"myscript param1 param2". If any "=" character is found in the request, then no command-line
parameters are provided. In any case, several environment variables may be set:

QUERY_STRING The URL parameters, as provided by the client
SERVER_SOFTWARE The name and version of the server software
SERVER_NAME The server's hostname, DNS alias, or IP address, used

for self-referencing links
GATEWAY_INTERFACE The revision of the CGI specification, as supported by

the server
HTTP_USER_AGENT The client's user-agent
SCRIPT_NAME Script name (for self-referencing links)
REQUEST_METHOD The request method (GET, HEAD, POST...)
SERVER_PROTOCOL The HTTP protocol version of the client's query
HTTP_VERSION Same as SERVER_PROTOCOL
HTTP_COOKIE The client's cookie
HTTP_REFERER The HTTP referer
AUTH_USER The authenticated user (if there was any authentication)
REMOTE_USER Same as AUTH_USER
AUTH_TYPE The authentication type used to authenticate the user

(BASIC, DIGEST...)

When it comes to answer to the client, the CGI application will output a (partial) HTTP

Page 11 / 17

Grumpy web & gopher server's Manual - CGI support

header, which should contain at least the "Content-Type" statement. This header will be followed
by an empty line (which tells to the server that the header is over), and then will come the
document which has to be transmitted to the client. Grumpy will analyze the header transmitted
by the CGI application and will complete it with all lacking informations (the status code, HTTP
version, etc).

As we just said, Grumpy is parsing the HTTP header returned by the CGI applications, and
completes it when necessary. But there are situations where such behavior is unwanted (for
example if the script undertakes to print the entire HTTP response including all necessary header
fields.). That's what we call NPH scripts (NPH stands for "No Parsed Headers"). Grumpy is
supporting such CGI applications - all we have to do, is name these particular programs starting
with "nph-" (like "nph-myscript.cgi"). Grumpy is thereby instructed not to parse the headers (as it
would normally do) nor add any which are missing. If you are going to use NPH, be sure to read
and understand the HTTP spec (http://www.w3.org/Protocols/). Your headers should be complete
and accurate, because you're instructing the Grumpy web server not to correct them or insert
what's missing.

Here are some useful CGI references:

• The Common Gateway Interface <http://hoohoo.ncsa.uiuc.edu/cgi/>

• CGI Made Really Easy <http://www.jmarshall.com/easy/cgi/>

• CGI and Environment Variables <http://www.cs.cf.ac.uk/Dave/PERL/node200.html>

Page 12 / 17

http://www.cs.cf.ac.uk/Dave/PERL/node200.html
http://www.jmarshall.com/easy/cgi/
http://hoohoo.ncsa.uiuc.edu/cgi/
http://www.w3.org/Protocols/

Grumpy web & gopher server's Manual - Customizing error pages

Customizing error pages

Grumpy does support customization of the returned error pages. The following error pages
are customizable: 400, 401, 403, 404. By default, when one of these errors occurs, Grumpy
returns a 4xx code with a html page containing a bare explanation of what happened. You can
replace these defaults page by anything you like, by creating a directory called ".errors" in the
root directory of your web server (or the root of your virtualhost server if you are using the
virtualhost feature), and place one or several files named "400.htm", "401.htm", "403.htm" and
"404.htm". If you're using virtual hosts, then each virtual host will use a distinct set of custom
error pages.

Note, that if you are going to use any pictures or links on your custom error pages, you will
need to use full (absolute) paths only (relative paths won't work).

Example

Say, you would like to change the default 404 error page to something nicer than just "Not
found". We assume that your root path is /var/www/. You will have to make your custom 404
html page first, name it "404.htm" and put it into the directory /var/www/.errors/ (you will
probably have to create the ".errors" directory before). That's all!

Page 13 / 17

Grumpy web & gopher server's Manual - Gopher server

Gopher server

Yes, Grumpy features an embedded Gopher server, too!

Gopher is a distributed document search and retrieval network protocol designed for the
Internet. Its goal is to function as an improved form of Anonymous FTP, enhanced with
hyperlinking features similar to that of the World Wide Web.

Setting up the Gopher support in Grumpy is trivial. There are three settings to configure in
the grumpy.cfg file:

GopherRoot=/var/gopher/
GopherHostname=gopher.mydomain.net
GopherPort=70

Then, you will have to set up your superserver (inetd or xinetd...) to listens on your Gopher
port (in most cases you will want to use the port TCP/70), and bind it to /sbin/grumpy, adding the
"--gopher" parameter to grumpy. A xinetd configuration file could look like that:

service gopher
{

disable = no
socket_type = stream
protocol = tcp
wait = no
user = wwwrun
server = /sbin/grumpy
server_args = --gopher
instances = 10
per_source = 2
log_type = FILE /var/log/xinetd-grumpy.log
log_on_success = HOST PID DURATION
log_on_failure = HOST

}

If you are using the classic (oldish) inetd, you will have to add a line to your inetd.conf
configuration file similar to that one:

gopher stream tcp nowait wwwrun /sbin/grumpy grumpy --gopher

Do not forget to check if the service "gopher" is properly declared in your /etc/services file.
Note, that Grumpy will look at any "descript.ion" files (if found in the browsed directory) when
serving Gopher content. Besides that, the Gopher protocol needs to describe the type of any
resource. Grumpy is simply basing on the file's extension to assign a Gopher type to the resource.
Below is a table containing all relations between gopher filetype and real file's extension (at least

Page 14 / 17

Grumpy web & gopher server's Manual - Gopher server

that's the way Grumpy handles them):

Gopher type Description Files binded to this gopher type

0 Plain text file *.txt

1 Directory listing All directories

2 CSO search query -

3 Error message -

4 BinHex encoded text file -

5 Binary (PC-DOS) archive file -

6 UUEncoded text file -

7 Search engine query -

8 Telnet session pointer -

9 Binary file All files which doesn't fit into any other
category

g GIF image file *.gif

h HTML file *.htm, *.html, *.gopherlink containing an
"URL" selector

i Informational message -

I Image file (other than GIF) *.jpg, *.jpeg, *.png, *.bmp, *.pcx, *.ico,
*.tif, *.tiff, *.svg, *.eps

s Audio file *.mp3, *.mp2, *.wav, *.mid, *.wma, *.flac,
*.mpc, *.aiff, *.aac

P PDF file *.pdf

M MIME encoded message -

; Video file -

The Gopher protocol is handling linking to external resources in a very neat way: links are
part of the protocol itself, not part of the document. That's why creating gopher links requires a
special trick. For the purpose of gopher links, Grumpy uses files with the extension *.gopherlink.
Let's say, we would like to put a link to a gopher site located at
gopher://mygopher.server.net/1/myfolder. We would create a file (say, "link-to-my-
server.gopherlink") with the following content:

Server=mygopher.server.net
Selector=/myfolder
Type=1
Port=70
Description=This is a link to my folder on my gopher server

Page 15 / 17

Grumpy web & gopher server's Manual - Gopher server

The only parameter of the file which is really required is (obviously) "Server". All other
parameters will be set to default values (no selector, type=1, port=70). If no description is
provided in the gopherlink file, then the server's address will be used. Note, that you may add
links to HTTP servers, too. For a link pointing at http://www.mydomain.com/stuff.htm, you'll
have to use a very short gopherlink file, containing just the "Selector" token:
"Selector=URL:http://www.mydomain.com/stuff.htm", and optionally a description. In this case,
the "Server" token is not used.

Last, but not least, there are situations where you would like to have the absolute control on
what (and how) the server will display a directory. That's why Grumpy is supporting gophermaps.
If Grumpy finds a gophermap in a directory, then it doesn't check the directory content, and
simply outputs to the user the content of the gophermap. A gophermap must be named
"grumpy.gophermap", and must contain gopher entries as described in the RFC 1436. There's an
example of a "grumpy.gophermap" file (don't forget about TABs!):

iWelcome to my gopher server! fake null 0
i fake null 0
0About my server /about.txt mygopher.domain.net 70
1Download /download mygopher.domain.net 70
1A link to a friend's server friend.domain.net 70
hMy Website URL:http://mywebsite.com

Note, that you may omit the server's address and server's port parts. Grumpy will then use his
general settings.

Page 16 / 17

Grumpy web & gopher server's Manual - Legal mumbo-jumbo

Legal mumbo-jumbo

Copyright © Mateusz Viste 2008, 2009

http://www.viste-family.net/mateusz/grumpy/

All rights reserved. This product or documentation is protected by copyright and is
distributed under licenses restricting its use, copying, distribution and decompilation. See the
GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version for details.

The copyright owner gives no warranties and makes no representations about the contents of
this manual and specifically disclaims warranties of merchantability or fitness to any purpose.

The copyright owner reserves the right to revise this manual and to make changes from time
to time in its content without notifying any person of such revision or changes.

Trademarks

Unix is a registered trademark of UNIX System Laboratories, Inc. All other product names
mentioned herein are the trademarks of their respective owners.

Page 17 / 17

http://www.viste-family.net/mateusz/grumpy/

	Table of Contents
	Introduction
	Installation (inetd)
	Installation (xinetd)
	Configuration file
	Directory listing
	HTTP Authentication
	CGI support
	Customizing error pages
	Gopher server
	Legal mumbo-jumbo

